On the $8\pi$-Critical-Mass Threshold of a Patlak--Keller--Segel--Navier--Stokes System

نویسندگان

چکیده

Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 26 May 2020Accepted: 17 February 2021Published online: 20 2021KeywordsPatlak--Keller--Segel--Navier--Stokes system, critical mass, long-time behaviorAMS Subject Headings35B40, 35B45Publication DataISSN (print): 0036-1410ISSN (online): 1095-7154Publisher: Society for Industrial and Applied MathematicsCODEN: sjmaah

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions

This paper is devoted to the analysis of non-negative solutions for a generalisation of the classical parabolic-elliptic PatlakKeller-Segel system with d ≥ 3 and porous medium-like non-linear diffusion. Here, the non-linear diffusion is chosen in such a way that its scaling and the one of the Poisson term coincide. We exhibit that the qualitative behaviour of solutions is decided by the initial...

متن کامل

Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model

We investigate the long time behavior of the critical mass Patlak-Keller-Segel equation. This equation has a one parameter family of steady-state solutions ̺λ, λ > 0, with thick tails whose second moment is not bounded. We show that these steady state solutions are stable, and find basins of attraction for them using an entropy functional Hλ coming from the critical fast diffusion equation in R ...

متن کامل

Existence, Uniqueness and Lipschitz Dependence for Patlak-Keller-Segel and Navier-Stokes in R with Measure-valued Initial Data

Abstract We establish a new local well-posedness result in the space of finite Borel measures for mild solutions of the parabolic-elliptic Patlak-Keller-Segel (PKS) model of chemotactic aggregation in two dimensions. Our result only requires that the initial measure satisfy the necessary assumption max x∈R μ({x}) < 8π. This work improves the small-data results of Biler [4] and the existence res...

متن کامل

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

This review is dedicated to recent results on the 2d parabolic-elliptic PatlakKeller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass Mc such that the solutions exist globally in time if the mass is less than Mc and above which there are solutions which blowup in finite time. The main tools, in ...

متن کامل

Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model

Abstract. Variational steepest descent approximation schemes for the modified Patlak-KellerSegel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Mathematical Analysis

سال: 2021

ISSN: ['0036-1410', '1095-7154']

DOI: https://doi.org/10.1137/20m1340629